Climate Change’s Impacts on Drought in Upper Zab Basin, Iraq: A Case Study

Author:

Mohammed Doaa R.ORCID,Mohammed Ruqayah K.ORCID

Abstract

Iraq has a semiarid and desert climate. Also, it is predicted to be more susceptible to global warming effects. In the present study, daily climatic data from the past and projected future of the Upper Zab Basin, located in northern Iraq and considered an example of arid and semiarid climate conditions, were simulated using LARS-WG 6.0, i.e., a stochastic weather generator. The model also estimated daily rainfall and temperature. Using the RCP4.5 and RCP8.5 main emission scenarios, the future climate throughout the current century was estimated utilizing the MIROC5, CanESM2, HadGEM2-ES, ESM1-M, and CSIRO-Mk3.6.0 general circulation models (GCMs). This estimation was performed considering the significant uncertainty of future climate estimates. The model, constructed using thirty years' worth of historical data, was validated using climate data from the Upper Zab Basin in northern Iraq (1990–2021). According to the data, the average monthly maximum temperature will decline by 2.15–6.20 °C under RCP4.5 and 1.81–6.10 °C under RCP8.5 by the end of the twenty-first era for the corresponding upstream and downstream sub-basins. Precipitation projections from all GCMs showed varying patterns. Given that some models, like CanESM2, expected a rise in precipitation, while others, like MIROC5, forecasted a future with no change in precipitation or a falling trend, which illustrates the significant level of uncertainty in precipitation forecast when only one model was utilized. Also, the downstream sub-basin suffered the most during the 1999–2000 and 2007–2008 droughts, with average RDIst values of -1.97 and -1.64, respectively. However, the upstream sub-basin had moderate to severe droughts in 1999–2000 and 2007–2008, with average RDIst values of -0.81 and -1.84, respectively. The water available in the research location will be significantly impacted by variations in rainfall and temperature.

Publisher

Tikrit University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3