The Effect of Uneven Metal Foam Distribution on Solar Compound Parabolic Trough Collector Receiver Thermal Performance

Author:

Farhan Israa S.ORCID,Mohammed Akeel A.ORCID,Al-Jethelah Manar S. M.ORCID

Abstract

Solar energy is a key player among other renewable energies that reduce greenhouse gases and replace conventional fuel, i.e., to solve global warming and fossil fuel descending issues. However, the thermal solar systems’ performance should be enhanced to cope with intermittent solar radiation. Metal foam can be used as an enhancer in solar collectors’ receivers. However, metal foams are associated with pressure drop. To benefit from the metal foam as a thermal enhancer and overcome the pressure drop issue, the present study numerically and experimentally investigates a novel Compound Parabolic Solar Collector (CPC) receiver with innovative uneven metal foam inserts of varying thickness. Two pores per inch (PPI) Cu-foam inserts, PPI10 and PPI20, were tested. These inserts were strategically placed at three different positions along the receiver, with thicknesses of 3 cm, 2 cm, and 1 cm starting from the inlet side. In the experimental part, three tubular receivers were tested, empty, i.e., without metal foam, inserted with Cu-foam of PPI10, and inserted with Cu-foam of PPI20. The experiments were conducted from 09:00 AM to 04:00 PM. The investigation involved water volume flow rates from 0.2 to 0.6 l/min. The numerical part included solving the governing equations, i.e., mass, momentum, and energy conservation, simulating conditions similar to the experiments. The Brinckman model described the fluid flow through the metal foam. The thermal performance of the CPC system was evaluated using the Nusselt number (Nu), thermal efficiency, water bulk temperature, and water outlet-inlet temperature difference. Inserting Cu-foam of PPI20 resulted in the hourly maximum Nu and thermal efficiency compared to the empty and PPI10 cases. Experimentally, the hourly maximum Nu was 8.9, 8.4, and 7.9 for PPI20, PPI10, and empty receivers, respectively, at 0.6 l/min. The average thermal efficiency was 88.3, 85, and 81.9 for PPI20, PPI10, and empty receivers, respectively, at 0.6 l/min. As for the outlet-inlet water temperature difference, the highest values were at 0.2 l/min. Again, PPI20 recorded the best results, i.e., 23.3 K, 21.5 K, and 20.2 K for PPI20, PPI10, and empty cases, respectively.

Publisher

Tikrit University

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3