Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations

Author:

Kisi Ozgur1,Shiri Jalal2

Affiliation:

1. Engineering Faculty, Civil Engineering Department, Hydraulics Divisions, Erciyes University, Kayseri, Turkey

2. Water Engineering Department, Faculty of Agriculture, University of Tabriz, IR-51664 Tabriz, Iran

Abstract

The ability of a wavelet and neuro-fuzzy conjunction technique for groundwater depth forecasting was investigated in this study. The wavelet-neuro-fuzzy model was improved by combining two methods, the discrete wavelet transform and the neuro-fuzzy model. The conjunction model was applied to different input combinations of daily groundwater depth data of Bondville and Perry wells. Root mean square error (RMSE) and correlation coefficient (R) statistics were used for evaluating the accuracy of wavelet-neuro-fuzzy models. The accuracy of the conjunction models was compared with those of the single neuro-fuzzy models in one-, two- and three-day-ahead groundwater depth forecasting. Comparison of the results revealed that the wavelet-neuro-fuzzy models perform better than the neuro-fuzzy models especially for the two- and three-day-ahead forecasting cases.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3