Disinfection of Escherichia coli and Pseudomonas aeruginosa by copper in water

Author:

Armstrong Andrew M.1,Sobsey Mark D.2,Casanova Lisa M.3

Affiliation:

1. Water Missions International, 1150 Kinzer Street, Building 1605, N. Charleston, SC 29405-1484, USA

2. Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA

3. Division of Environmental Health, School of Public Health, Georgia State University, 140 Decatur St, Atlanta, GA 30302, USA

Abstract

When households lack access to continuous piped water, water storage in the home creates opportunities for contamination. Storage in copper vessels has been shown to reduce microbes, but inactivation kinetics of enteric bacteria in water by copper alone needs to be understood. This work characterized inactivation kinetics of Escherichia coli and Pseudomonas aeruginosa by dissolved ionic copper in water. Reductions of E. coli and P. aeruginosa increase with increasing dose. At 0.3 mg/L, there was a 2.5 log10 reduction of E. coli within 6 hours. At 1 and 3 mg/L, the detection limit was reached between 3 and 6 hours; maximum reduction measured was 8.5 log10. For P. aeruginosa, at 6 hours there was 1 log10 reduction at 0.3 mg/L, 3.0 log10 at 1 mg/L, and 3.6 log10 at 3 mg/L. There was no significant decline in copper concentration. Copper inactivates bacteria under controlled conditions at doses between 0.3 and 1 mg/L. E. coli was inactivated more rapidly than P. aeruginosa. Copper at 1 mg/L can achieve 99.9% inactivation of P. aeruginosa and 99.9999997% inactivation of E. coli over 6 hours, making it a candidate treatment for stored household water.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3