Efficient degradation of antibiotic wastewater by biochar derived from water hyacinth stems via periodate activation: pyridinic N and carbon structures improved the electron transfer process

Author:

Duan Wanqing1,Zhang Ming2,Zhou Runjuan2

Affiliation:

1. a The Shandong Bureau Testing Co., Ltd of China Metallurgica Geology Bureau, Jinan 250014, China

2. b School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China

Abstract

Abstract Biochar-activated periodate (PI) is a promising technology toward antibiotic wastewater purification. However, the mechanism of pyrolysis temperature on PI activation efficiency by biochar has not yet been revealed. Herein, this work selected water hyacinth stems as raw materials to prepare biochar with different pyrolysis temperatures (400, 500, 600, and 700 °C), and applied it to degrade tetracycline (TC) wastewater through PI activation. The results show that biochar with a pyrolysis temperature of 700 °C (BC-700) possesses the best TC degradation performance (∼100% within 30 min). Besides, the degradation of TC by BC-700 is less interfered by coexisting anions and water matrix, and exhibits good reusability. Quenching experiments and open circuit voltage tests verified that IO3•, 1O2, and reactive complex BC-PI* are active species involved in TC degradation. In addition, by constructing the relationship between biochar surface properties and degradation rate kobs, it was revealed that the dominant role of pyridinic N in PI adsorption and formation of reactive complexes as well as the promotion of sp2-hybridized carbon in the electron transfer process. This work provides novel insights into the application of biochar in antibiotic wastewater treatment via PI activation.

Funder

Natural Science Foundation of Anhui Provincial

Key project of University Natural Science Research Project of Anhui Province

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3