Pilot scale nanofiltration membrane fabrication containing ionic co-monomers and halloysite nanotubes for textile dye filtration

Author:

Keskin Başak12,Korkut Sevde12,Ormancı-Acar Türkan3,Turken Turker12,Tas Cuneyt Erdinc4,Menceloglu Yusuf Z.45,Unal Serkan45,Koyuncu Ismail12

Affiliation:

1. a Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey

2. b National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey

3. c Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, İstanbul, Turkey

4. d Faculty of Engineering and Natural Sciences, Material Science and Nanoengineering, Sabancı University, Istanbul, Turkey

5. e Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence, Sabancı University, Istanbul, Turkey

Abstract

Abstract Wastewater from the textile industry contains high concentrations of pollutants, so the wastewater must be treated before it is discharged. In addition, the reuse of treated wastewater should be considered from an environmental point of view, as large volumes of wastewater are produced. Since textile wastewater mainly contains dyestuffs, it must be treated effectively using environmentally friendly technologies. Membrane processes are widely used in textile wastewater treatment as they have distinct advantages over conventional wastewater treatment methods. This study reports the pilot-scale manufacturing and characterization of three different NF membranes. Three different types of membranes were fabricated. The fabricated membranes were compared through characterization by surface properties, chemical structure and morphology. Membranes were tested for pure water flux. Then the synthetic wastewater (SWW) was tested for flux and rejection. Lastly, the textile wastewater was tested. The textile wastewater flux of pure piperazine (PIP), 60% S-DADPS and 0.04% halloysite nanotubes (HNTs) were 22.42, 79.58 and 40.06 L m−2 h−1. It has been proven that the 60% s-DADPS membrane provides up to four times improvement in wastewater flux and simultaneously. In addition, NF membranes produced using HNT and sDADPS on a pilot scale have brought innovation to the literature with the good results obtained.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3