Development of aerobic granular sludge for real industrial/municipal wastewater treatment

Author:

Sanchez-Sanchez Celina1ORCID,Moreno-Rodríguez Ernestina2,Ortiz-Cruz J. Alejandro3,Moeller-Chávez Gabriela Eleonora4ORCID

Affiliation:

1. a Department of Environmental Engineering and Biotechnology, Engineering School, Universidad de las Américas Puebla, Sta. Catarina Mártir, San Andrés Cholula, Puebla 72810, México

2. b Department of Chemical Food and Engineering, Engineering School, Universidad de las Américas Puebla, Sta. Catarina Mártir, San Andrés Cholula, Puebla 72810, México

3. c APC/GDOT Professional Services, Aspen Tech de Mexico, Juarez, Cuauhtémoc 06600, CDMX, México

4. d Department of Environmental Engineering, Universidad Politécnica del Estado de Morelos, Boulevard Cuahnáhuac 566, El Texcal, Jiutepec, Morelos 62550, México

Abstract

Abstract The formation and evolution of aerobic granular sludge (AGS) developed in a sequential batch reactor (SBR) were evaluated to understand the effect of influential operating parameters on its morphology, stability, and removal performance while treating industrial/municipal wastewater. After 18 days of operation (stage I), mature granules were identified in the reactor, and in 25 days, the AGS system reached a stable operation. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) were affected by the applied operating variations (from stages II to VII). Until day 48 (stage III), the aerobic granules did not show relevant changes in shape and stability. During this stage, the AGS system achieved high removal efficiencies of COD (97.7%) and TKN (86.2%) and a sludge volume index (SVI) of 65 ± 6.7 mL/g-total suspended solids. From stage IV until the end of the reactor operation, partial disintegration and rupture occurred in the system, but granules did not completely disintegrate. Specifically, a volumetric exchange ratio (VER) of >67% and an aeration rate (AR) of <2.5 L/min promoted the compactness and the structural integrity of AGS. The principal component analysis corroborated that the rise in the VER is an effective strategy for improving AGS stability and organic pollutant removal.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3