Solar distillation of human urine to recover non-potable water and metal phosphate mineral

Author:

Bucholtz Pippin1,Steele McKenzie1,Tripathi Vedika1,Graham Cole1,Crane Lucas1,Boyer Treavor H.1ORCID

Affiliation:

1. 1 School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, P.O. Box 873005, Tempe, AZ 85287-3005, USA

Abstract

Abstract Human urine is a readily available nutrient source that can complement commercial fertilizer production, which relies on finite mineral resources and global supply chains. This study evaluated the effectiveness of a simplified solar distillation process for urine to recover phosphorus (P) and nitrogen for agricultural use and water for non-potable purposes. Synthetic fresh, synthetic hydrolyzed, real fresh, and real hydrolyzed urine were exposed to direct sunlight for 6 h in a simple distillation apparatus, which produced distillation bottoms and distillate. Metal phosphate precipitation in the distillation bottoms was evaluated to recover P. The non-potable water was recovered as distillate. Hydrolyzed urine recovered more metal phosphate solid in the distillation bottoms and had a higher conductivity in the distillate than fresh urine. Hydrolyzed urine also achieved greater distillate volume recovery than fresh urine. Hydrolyzed urine had a greater presence of UV-absorbing organics in the distillate than fresh urine and therefore produced a lower-quality product water. There was no significant correlation between the daily high air temperature and the volume of distillate recovered. This study provides a comprehensive data set on simplified solar distillation of human urine considering the fate of nutrients and water for different types of urine.

Funder

National Science Foundation

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3