Daily runoff prediction during flood seasons based on the VMD–HHO–KELM model

Author:

Zhang Xianqi123,Liu Fang1ORCID,Yin Qiuwen1,Wang Xin1,Qi Yu1

Affiliation:

1. a Water Conservancy College, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. b Collaborative Innovation Center of Water Resources Efficient Utilization and Protection Engineering, Zhengzhou 450046, China

3. c Technology Research Center of Water Conservancy and Marine Traffic Engineering, Zhengzhou, Henan Province 450046, China

Abstract

Abstract Improving the accuracy of daily runoff in the lower Yellow River is important for flood control and reservoir scheduling in the lower Yellow River. Influenced by factors such as meteorology, climate change, and human activities, runoff series present non-stationary and non-linear characteristics. To weaken the non-linearity and non-smoothness of runoff time series and improve the accuracy of daily runoff prediction, a new combined runoff prediction model (VMD–HHO–KELM) based on the ensemble Variational Modal Decomposition (VMD) algorithm and Harris Hawk Optimisation (HHO) algorithm-optimised Kernel Extreme Learning Machine (KELM) is proposed and applied to Gaocun and Lijin hydrological stations. The VMD–HHO–KELM model has the highest prediction accuracy, with the prediction model R2 reaching 0.95, mean absolute error reaching 13.3, and root mean square error reaching 33.83 at the Gaocun hydrological station, and R2 reaching 0.96, mean absolute error reaching 8.03, and root mean square error reaching 38.45 at the Lijin hydrological station.

Funder

Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3