Optimization of thermal–alkaline pretreatment for dewatering of excess sludge followed by thermal/persulfate oxidation for the elimination of extracellular ARGs in TAP-treated filtrate

Author:

Yao Pengcheng1,You Aiju1

Affiliation:

1. 1 Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou, Zhejiang 310000, China

Abstract

Abstract This study evaluated the dewatering of excess sludge and the removal of extracellular antibiotic-resistant genes (eARGs) from the treated filtrate by thermal–alkaline pretreatment (TAP) and thermal/persulfate (PS). The optimization of TAP and thermal/PS was investigated during excess sludge dewatering and removal of eARGs via response surface methodology (RSM). The results demonstrated that TAP could effectively decrease the water content of excess sludge (41%) at optimum operating conditions (such as temperature: 88 °C, operation time: 90 min, pH: 11.2). However, the increase in eARGs abundance in TAP-treated filtrate is probably due to the dissolved effluent of the intracellular matter during dewatering. Therefore, TAP-treated filtrate was subjected to thermal/PS, and the removal of eARGs after TAP was explored. The desirability function was used to optimize two kinds of removal efficiencies of eARGs, simultaneously. The optimal pH, persulfate concentration, and reaction temperature were 10.2, 0.039 M, and 75.12 °C, respectively. 6.28 log·copies/mL of tetA and 6.57 log·copies/mL of sulI were removed under the above-mentioned conditions. The process provided efficient dewatering of excess sludge and elimination of eARGs from the filtrate.

Funder

National Fund for Fostering Talents of Basic Science

the Science and Technology Project of Zhejiang Province

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3