Affiliation:
1. a Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
2. b Dayu Environmental Protection Co., Ltd, Tianjin 301739, China
Abstract
Abstract
A positively charged nanofiltration (NF) membrane is known to have exceptional separation performance for bivalent cations in aqueous solutions. In this study, a new NF activity layer was created using interfacial polymerization (IP) on a polysulfone (PSF) ultrafiltration substrate membrane. The aqueous phase combines the two monomers of polyethyleneimine (PEI) and phthalimide, while successfully producing a highly efficient and accurate NF membrane. The conditions of the NF membrane were studied and further optimized. The aqueous phase crosslinking process enhances the polymer interaction, resulting in an excellent pure water flux of 7.09 L·m−2·h−1·bar−1 under a pressure of 0.4 MPa. Additionally, the NF membrane shows excellent selectivity toward inorganic salts, with a rejection order of MgCl2 > CaCl2 > MgSO4 > Na2SO4 > NaCl. Under optimal conditions, the membrane was able to reject up to 94.33% of 1,000 mg/L of MgCl2 solution at an ambient temperature. Further to assess the antifouling properties of the membrane with bovine serum albumin (BSA), the flux recovery ratio (FRR) was calculated to be 81.64% after 6 h of filtration. This paper presents an efficient and straightforward approach to customize a positively charged NF membrane. We achieve this by introducing phthalimide, which enhances the membrane's stability and rejection performance.
Funder
Research Project of Tianjin Education Commission
Subject
Water Science and Technology,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献