The temperature-dependent kinetics and bacteria regrowth by performic acid and sodium hypochlorite disinfection

Author:

Ding Ning123ORCID,Liu Kun1,Jiang Lin1,Liu Hong4

Affiliation:

1. a School of Ecology and Environment, Beijing Technology and Business University, Beijing, China

2. b State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China

3. c Key Laboratory of Cleaner Production and Comprehensive Utilization of Resources, China National Light Industry, Beijing Technology and Business University, Beijing, China

4. d School of Environmental Science and Engineering, Suzhou University of Science and Technology, Jiangsu Province, China

Abstract

Abstract Sodium hypochlorite (NaOCl) has been widely used as a disinfectant in water and wastewater treatment, because of its high efficiency and low cost, whereas the bio-toxicity of its disinfection byproducts (DBPs) raised great concern. Performic acid (PFA) produces less DBPs and shows strong oxidation abilities. In this study, the effect of temperature on NaOCl and PFA disinfection as well as bacteria regrowth were evaluated. First, the inactivation of Escherichia coli, Staphylococcus aureus, and Bacillus subtilis by NaOCl and PFA at 4 and 20 °C, detected by cell cultured-based plate counting were fitted to kinetic models, and the predicted CTs were calculated. The results showed that NaOCl was more effective than PFA for E. coli and S. aureus inactivation, and the temperature was positively correlated to disinfection. Second, bacteria regrowth was evaluated at different temperatures (4 and 20 °C) of disinfection and storage. The results showed that the bacteria inactivated by NaOCl regrew prominently, especially for those inactivated at 4 and stored at 4 °C, probably through the mechanism of reactivation of viable but non-culturable (VBNC) bacteria. PFA was superior in suppressing bacteria regrowth, and it may be used as an alternate disinfectant in water treatment in cold environment.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3