Effect of different MIT rainfall event division methods on volume capture ratio of annual rainfall based on bioretention assessment

Author:

Wang Peng1,Wang Jianlong12,Yang Zitong1,Li Kai1,Qiu Rongting1,Zhang Changhe1,Li Junqi12

Affiliation:

1. a Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2. b Beijing University of Civil Engineering and Architecture Beijing Sustainable Urban Drainage System Construction and Risk Control Engineering Technology Research Center, Beijing 100044, China

Abstract

Abstract Volume capture ratio of annual rainfall (VCRAR) is the key parameter of low-impact development (LID) facilities design, which is significantly affected by the rainfall event division method. However, there is no universal agreement on how to determine an optimal division method to achieve it. A modified minimum inter-event time (MIT) method based on MATLAB software was proposed to find an optimal MIT value. The result showed that the optimal MIT value in Beijing is 200 min based on the daily rainfall data from 1987 to 2016, and the annual average rainfall events were 34.2 with an average rainfall depth of 13.7 mm. Taking bioretention facilities as an example, the errors of design VCRAR under different MIT values were compared based on a Stormwater Management Model (SWMM). The results showed that when design VCRAR was ≤50, 55–60, 60–75, 75–80 and >80%, the optimal MIT value for LID facilities design was 60, 120, 200, 360 and 1,440 min, respectively. Therefore, the optimal MIT should be flexibly selected with the changing of design VCRAR, to ensure that LID facilities meet the design goals.

Funder

the National Key R & D Program of the Science and Technology of China

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3