Catalytic polymerization of bisphenol A using a horseradish peroxidase immobilized microporous membrane reactor

Author:

Li Haitao1,Guo Linfeng1,Li Yingying2,Chen Min1,Bai Chunlu3,Song Aolei3,Cheng Linxiu1,Chen Xueli1,Chen Yonglin1

Affiliation:

1. a Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China

2. b Semiconductor Manufacturing North China (Beijing) Co., Ltd, Beijing, China

3. c Beijing Changzheng Mechanical Equipment Manufacture Co., Ltd, Beijing, China

Abstract

Abstract Bisphenol A (BPA) is one of the most widely used chemical products, which is discharged into rivers and oceans, posing great hazards to organisms such as reproductive toxicity, hormone imbalance and cardiopathy induction. With the expansion harm of BPA, people have paid more attention to the environmental effects. In this paper, the degradation of BPA from the synthetic wastewater using the immobilization of horseradish peroxidase membrane reactor (HPR) was investigated. The immobilized HRP microporous membrane was prepared by the porous calcium alginate method. In addition, the reuse of the immobilized HPR membrane and the measurement of membrane flux showed that the membrane has good activity and stability. Finally, the experimental parameters including reaction time, pH, the concentration of BPA and the dosage of H2O2 were optimized to remove the BPA, and about 78% degradation efficiency of BPA was achieved at the optimal condition as follows: H2O2 to BPA molar ratio of 1.50 with an initial BPA concentration of 0.1 mol/L, the HPR dosage of 3.84 u/mL, the initial solution pH of 7.0, a temperature of 20 °C and a contact time of 10 min.

Funder

National Natural Science Foundation of China

Open Research Fund Program of Jiangxi Provincal Key Laboratory of Low-Carbon Solid Waste Recycling

Science and Technology Research Project of Jiangxi Provincial Department of Education

Jiangxi Provincial Natural Science Foundation

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3