Study on low temperature plasma combined with AC/Mn + TiO2–Al2O3 catalytic treatment of sewage-containing polyacrylamide

Author:

Wang Xiaobing1,Guan Fengwei1,Huang Zhigang1,He Hao1,Wang Lu1,Li Kaifeng1

Affiliation:

1. 1 School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China

Abstract

Abstract With the introduction of tertiary oil recovery technology, polymer oil drive technology has effectively improved the recovery rate of crude oil, but the resulting oilfield wastewater-containing polyacrylamide (PAM) is viscous and complex in composition, which brings difficulties to wastewater treatment. The treatment of this kind of wastewater has become an urgent problem to be solved, and the removal of PAM is the key. In this paper, a dielectric barrier discharge (DBD) co-catalyst was used to treat PAM-containing solutions to investigate the effect of different catalytic reaction systems on the degradation of PAM. The morphological changes of the PAM solution before and after the reaction were also studied by the environmental electron microscope scanner (ESEM), and the information of the functional groups in the solution before and after the reaction was studied by infrared spectroscopy analysis of the PAM solution. The degradation rate rose by 26.3% in comparison to that without discharge when AC/Mn + TiO2 and Al2O3 were combined and catalyzed at a mass ratio of 2:1 and a discharge period of 300 min. The degradation rate rose by 19.3 and 6.8%, respectively, in comparison to AC/Mn + TiO2 and Al2O3-catalyzed alone. It demonstrates that this catalytic system has the optimum catalytic effect.

Funder

the Open Project of the Key Laboratory of Enhanced Oil and Gas Recovery of the Ministry of Education

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3