Design and spatial pattern optimization for a sponge city using factor analysis and geographical statistics to restore urban resilience: A case study in a coastal area of China

Author:

Yuan Yingwei1,Zhang Qian1,Chen Sheming2,Chen Feiwu1,Zhang Mucheng1

Affiliation:

1. a College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300384, China

2. b Tianjin Center, China Geological Survey, Tianjin 300170, China

Abstract

Abstract The sponge city is a new concept of stormwater management for ecological city construction, which aims to restore water-cycle processes and reduce runoff. Cities in coastal districts are suffering from serious instability due to high population density, urbanization, and land-use changes. However, previous research contains few evaluations of balancing urban ecological indicators of sponge city performance, including geographical, environmental, economic, and social factors, and their effect on resilience at a macro level to develop low-impact development schemes. In this study, we developed an integrated framework using factor analysis, geographical statistics, multi-objective analysis, and remote sensing methods to extract the factors influencing sponge city resilience and to establish spatial pattern schemes. The results indicated that the urbanization degree and plant adaptability had the greatest impact on sponge city performance, with weights of 45 and 27%, respectively. Sponge city spatial pattern schemes performed the best in the combination scenario of 14.8–46.8% green roofs (by area ratio) supported by grooves and rain barrels +10% herbaceous basins divided into units by ecological tree pools +10% permeable pavements and sidewalks. This scenario balanced facilities and cost to optimize the spatial pattern, which improved sponge city adaptability and urban ecological conditions.

Funder

Tianjin Graduate Research Innovation Project

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3