Optimum conditions for high-speed solid–liquid separation by ballasted flocculation

Author:

Suzuki Yoshihiro1ORCID,Kaku Ryosuke1,Takahashi Katsuya1,Kanai Miyuka1,Tamai Soichiro2,Annaka Yuko3,Chuganji Nobuaki3

Affiliation:

1. a Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan

2. b Graduate School of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan

3. c Nishihara Environment Co., Ltd, Yokoso-Rainbow Tower, Kaigan Minato-ku, Tokyo 108-0022, Japan

Abstract

Abstract In the ballasted flocculation, high-speed sedimentation of suspensions is achieved using a microsand as a ballast material and a polymer flocculant combined with microflocs made of polyaluminum chloride (PAC) as an inorganic coagulant. In this study, three turbid water samples containing kaolin clay (kaolin concentration: 20, 200, and 500 mg/L) were treated by coagulation–sedimentation and ballasted flocculation. The effects of pH and PAC dosage, which are the controlling parameters for coagulation, and the microsand (silica sand) and polymer dosages, which are the controlling parameters for ballasted treatment, on the treatment efficiency and floc settling velocity were examined. The floc settling velocity under the optimum conditions was 17 times higher than that of the conventional coagulation–sedimentation process using PAC. The turbidity was 0.54 turbidity unit (TU) (TU as the kaolin standard), and its removal efficiency was 99.7%. Furthermore, turbid water samples with different kaolin concentrations (20 and 500 mg/L) were treated via the ballasted flocculation. In this study, fundamental information on the optimization of each dosage condition of coagulant, ballast, and polymer and pH condition in ballasted flocculation was obtained, and the removal mechanisms under optimal, underoptimistic and overoptimistic conditions were proposed.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3