Whole campus wastewater surveillance of SARS-CoV-2 for COVID-19 outbreak management

Author:

Sharaby Y.12ORCID,Gilboa Y.1,Alfiya Y.1,Sabach S.1,Cheruti U.1,Friedler Eran1ORCID

Affiliation:

1. a Faculty of Civil & Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel

2. b Current address: Department of Biology & Environment, University of Haifa, Oranim, Tivon, Israel

Abstract

Abstract In this long-term study (eight months), a wastewater-based epidemiology program was initiated as a decision support tool for the detection and containment of COVID-19 spread in the Technion campus. The on-campus students' accommodations (∼3,300 residents) were divided into housing clusters and monitored through wastewater SARS-CoV-2 surveillance in 10 manholes. Results were used to create a ‘traffic-light’ scheme allowing the Technion's COVID-19 task force to track COVID-19 spatiotemporal spread on the campus, and consequently, contain it before high morbidity levels develop. Of the 523 sewage samples analysed, 87.4% were negative for SARS-CoV-2 while 11.5% were positive, corroborating morbidity information the COVID-19 task force had. For 7.6% of the SARS-CoV-2 positive samples, the task force had no information about positive resident/s. In these events, new cases were identified after the relevant residents were clinically surge tested for COVID-19. Hence, in these instances, wastewater surveillance provided early warning helping to secure the health of the campus residents by minimising COVID-19 spread. The inflammation biomarker ferritin levels in SARS-CoV-2 positive sewage samples were significantly higher than in negative ones. This may indicate that in the future, ferritin (and other biomarkers) concentrations in wastewater could serve as indicators of infectious and inflammatory disease outbreaks.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3