Carbon-based nanomaterials mediated adsorption and photodegradation of typical organic contaminants in aqueous fulvic acid solution

Author:

Yin Zhiming1,Liu Siyu1,Tian Zhen1,Zhao Xinyue1,He Jun2,Wang Chengjun1ORCID

Affiliation:

1. a College of Resources and Environment, South-Central Minzu University, Wuhan 430074, China

2. b Department of Chemical and Environmental Engineering, University of Nottingham-Ningbo China, Ningbo 315100, China

Abstract

Abstract In this work, the formation of carbon-based nanomaterials–fulvic acid (CNMs-FA) composites and their capacities for the adsorption and photodegradation of typical organic contaminants in aqueous solutions were investigated. The results suggested that the formation of CNMs-FA composites was dominated by adsorbing FA on CNMs via the physisorption process, which fit the pseudo-first-order kinetic model and the Langmuir isotherm model. The formed CNMs-FA composites were characterized by using the Brunauer–Emmett–Teller, scanning electron microscopy, and infrared spectroscopy techniques and further applied for examining their effects on the adsorption and photodegradation of selected organic contaminants in aqueous solutions. The adsorption of organic contaminants on CNMs-FA composites is mainly involved in hydrogen bonding and electrostatic interactions between organic contaminants and FA species adhering to CNMs. In addition, the CNMs-FA composites are able to promote the photosensitive degradation of organic contaminants due to the photogenerated reactive species including ROS and CNMs-3FA* under sunlight irradiation. This study provided a deeper and more comprehensive understanding of the environmental behavior of CNMs in real natural surface water and clarified the underlying mechanisms.

Funder

South-Central University for Nationalities

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3