Reaction mechanism and detecting properties of a novel molecularly imprinted electrochemical sensor for microcystin based on three-dimensional AuNPs@MWCNTs/GQDs

Author:

Zhao Rujing12,Li Jin1,Wu Chengsi3,Cai Jun4,Li Shiqian2,Li Aifeng1,Zhong Lian5ORCID

Affiliation:

1. a Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China

2. b College of Materials and Environmental Engineering, Modern Facility Agriculture Engineering Research Center of Fujian Universities, Fujian Polytechnic Normal University, Fuqing 350300, China

3. c Qingdao Rely Environmental Technology Co., Ltd, Qindao, China

4. d Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan 430068, China

5. e College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China

Abstract

Abstract Microcystins with leucine arginine (MC-LR) is a virulent hepatotoxin, which is commonly present in polluted water with its demethylated derivatives [Dha7] MC-LR. This study reported a low-cost molecularly imprinted polymer network-based electrochemical sensor for detecting MC-LR. The sensor was based on a three-dimensional conductive network composed of multi-walled carbon nanotubes (MWCNTs), graphene quantum dots (GQDs), and gold nanoparticles (AuNPs). The molecularly imprinted polymer was engineered by quantum chemical computation utilizing p-aminothiophenol (p-ATP) and methacrylic acid (MAA) as dual functional monomers and L-arginine as a segment template. The electrochemical reaction mechanism of MC-LR on the sensor was studied for the first time, which is an irreversible electrochemical oxidation reaction involving an electron and two protons, and is controlled by a mixed adsorption–diffusion mechanism. The sensor exhibited a great detection response to MC-LR in the linear range of 0.08–2 μg/L, and the limit of detection (LOD) is 0.0027 μg/L (S/N = 3). In addition, the recoveries of the total amount of MC-LR and [Dha7] MC-LR in the actual sample by the obtained sensor were in the range from 91.4 to 116.7%, which indicated its great potential for environmental detection.

Funder

National Key R&D Program of China

the Open Project Program for Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fujian Polytechnic Normal University

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3