Combined conditioning of inorganic coagulant and polyamine to improve the dewaterability of municipal sludge, minimize dosage and reduce the influence of filtrate

Author:

Hua Baolv123,Zhao Shichao12,Li Fengting124

Affiliation:

1. a State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

2. b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China

3. c Jiangsu Runyang Yueda Century Photovoltaic Technology Co., Ltd, Yancheng, Jiangsu 224007, People's Republic of China

4. d Present address: College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

Abstract

Abstract Efficient dewatering of sludge is necessary for its cost-effective transportation and final disposal. However, the common method of using polyferric sulfate (PFS) and polyacrylamide (PAM) requires a large amount of dosage and produces high iron ion content in the filtrate. This study examined a solution of applying polyamine (PA) coupled with inorganic coagulant PFS. The results demonstrated that using PFS + PA together could achieve the same or similar filtering rates as using PFS + PAM. The capillary suction time (CST) of PFS + PA (89.0 s) was equivalent to that of PFS (75.1 s) and better than that of PA (117.1 s) and raw sludge (RS, 403.8 s). Compared with PFS + PAM, the combination of PFS and PA efficiently removed Fe ions and chemical oxygen demand (COD) in sludge water content, with Fe ions in the sludge filtrate reduced by 97.8% and COD reduced by 78.9%, respectively. By analyzing the basic physicochemical properties of the sludge system, including the synergistic effect of coagulation and flocculation, sludge hydrolysis and flocculation, it indicated that PA + PFS could reduce bound water. These results demonstrated that combining PFS and PA to improve sludge dewatering performance is more beneficial than utilizing a coagulant or flocculant alone, even PFS + PAM.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3