The improvement of wavelet-based multilinear regression for suspended sediment load modeling by considering the physiographic characteristics of the watershed

Author:

Nejatian Niloofar1,Yavary Nia Mohsen2,Yousefyani Hooshyar3,Shacheri Fatemeh4,Yavari Nia Melika5

Affiliation:

1. a Department of Civil Engineering of City College, City University of New York, New York, USA

2. b Department of Civil and Coastal Engineering, University of Florida, Gainesvile, Florida, USA

3. c Department of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, USA

4. d Department of Biological Systems Engineering, Virginia Tech University, Virginia, Blacksburg, USA

5. e Department of Civil and Environmental Engineering, Politecnico Di Milano, Milan, Italy

Abstract

Abstract The aim of this study is to model a relationship between the amount of the suspended sediment load by considering the physiographic characteristics of the Lake Urmia watershed. For this purpose, the information from different stations was used to develop the sediment estimation models. Ten physiographic characteristics were used as input parameters in the simulation process. The M5 model tree was used to select the most important features. The results showed that the four factors of annual discharge, average annual rainfall, form factor and the average elevation of the watershed were the most important parameters, and the multilinear regression models were created based on these factors. Furthermore, it was concluded that the annual discharge was the most influential parameter. Then, the stations were divided into two homogeneous classes based on the selected features. To improve the efficiency of the M5 model, the non-stationary rainfall and runoff signals were decomposed into sub-signals by the wavelet transform (WT). By this technique, the available trends of the main raw signals were eliminated. Finally, the models were developed by multilinear regressions. The model using all four factors had the best performance (DC = 0.93, RMSE = 0.03, ME = 0.05 and RE = 0.15).

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3