Removal performance and mechanism for a three-dimensional electrode system treating biochemical effluent of a wastewater treatment plant

Author:

Tan Mengyu1,Zhang Shuchi1,Dong Jiayu1,Huang Jialu1,Wu Xiaolong1,Tang Xueni2,Wu Donglei1

Affiliation:

1. a College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

2. b Zhejiang Tianchuan Environmental Science & Technology Co., Ltd, Hangzhou 310000, China

Abstract

AbstractWith the increasingly strict discharge requirements, it is urgent for wastewater treatment plants (WWTPs) to find an efficient and feasible technology for advanced treatment. A three-dimensional (3D) electrode system was used to treat the real biochemical effluent of a WWTP collecting industrial and domestic wastewater in the present study. The 3D electrode system had the best performance at a current density of 2 mA/cm2 and an electrode distance of 3 cm. The kinetic analysis showed that the organic pollutant degradation conformed to pseudo-first-order kinetics. The COD removal of the 3D electrode system was more than twice that of the two-dimensional (2D) electrode system, and the energy consumption was 46.56% less than that of the 2D electrode system. By measuring the adsorption capacity and the electrocatalytic ability of the system to produce strong oxidizing species, it was demonstrated that granular activated carbon (GAC) had the synergy of adsorption and electrochemical oxidation, and ·OH playing the dominant role in oxidizing pollutants. At the same time, the organic contaminants adsorbed on GAC could be degraded. Finally, the adsorption–electrochemical oxidation mechanism was proposed. The above results highlighted that the 3D electrode system was a promising alternative method in the application of advanced treatment for WWTPs.

Funder

Key Research and Development Program of Zhejiang Province of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3