Competitive study of homogeneous and heterogeneous Fenton-like flow-through propoxur oxidation in ROC solution

Author:

Azaiza Abed-Alhakeem1,Semiat Raphael1,Shemer Hilla1ORCID

Affiliation:

1. 1 Rabin Desalination Laboratory, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel

Abstract

Abstract Reverse osmosis is used as a tertiary treatment for wastewater reclamation. However, sustainable management of the concentrate (ROC) is challenging, due to the need for treatment and/or disposal. The objective of this research was to investigate the efficiency of homogeneous and heterogeneous Fenton-like oxidation processes in removing propoxur (PR), a micro-pollutant compound, from synthetic ROC solution in a submerged ceramic membrane reactor operated in a continuous mode. A freshly prepared amorphous heterogeneous catalyst was synthesized and characterized, revealing a layered porous structure of 5–16 nm nanoparticles that formed aggregates (33–49 μm) known as ferrihydrite (Fh). The membrane exhibited a rejection of >99.6% for Fh. The homogeneous catalysis (Fe3+) exhibited better catalytic activity than the Fh in terms of PR removal efficiencies. However, by increasing the H2O2 and Fh concentrations at a constant molar ratio, the PR oxidation efficiencies were equal to those catalyzed by the Fe3+. The ionic composition of the ROC solution had an inhibitory effect on the PR oxidation, whereas increased residence time improved it up to 87% at a residence time of 88 min. Overall, the study highlights the potential of heterogeneous Fenton-like processes catalyzed by Fh in a continuous mode of operation.

Funder

Ministry of Science, Technology and Space

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3