Experimental study on the dissipation performance of supersaturated total dissolved gas in microbubble treatment

Author:

Ou Yangming1ORCID,Li Zhenjun2,Li Ran3,Feng Jingjie3,Faisal Shah1

Affiliation:

1. a School of Architecture and Civil Engineering, Chengdu University, Chengdu, China

2. b Bei Fang Investigation, Design & Research Co. Ltd, Tianjin, China

3. c State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China

Abstract

Abstract The production of total dissolved gas (TDG) supersaturation resulting from dam discharges has been identified as a causative factor for gas bubble disease (GBD) or mass mortality in fish. In this study, the mitigation solution for fish refuge in supersaturated TDG water was explored by using microbubbles generated by aeration to enhance supersaturated TDG dissipation. The effects of various aeration factors (aeration intensity, water depth, and aerator size) on the dissipation processes of supersaturated TDG were quantitatively investigated through a series of tests conducted in a static aeration column. The results indicated that the dissipation rates of supersaturated TDG increased as a power function with the factors of aeration intensity and aerator size and decreased as a power function with increasing water depth. A universal prediction model for the dissipation rate of supersaturated TDG in the aeration system was developed based on the dimensional analysis of the comprehensive elements, and the parameters in the model were determined using experimental data. The outcomes of this study can furnish an important theoretical foundation and scientific guidance for the utilization of aeration as a measure to alleviate the adverse impacts of supersaturated TDG on fish.

Funder

Key Program of National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3