Remediation of Pb (II), Cd (II), and Zn (II) from aqueous solutions using porous (styrene–divinylbenzene)/Cu–Ni bimetallic nanocomposite microspheres: continuous fixed-bed column study

Author:

Thrikkykkal Hridya1,Antu Rosmin1,P. S. Harikumar1

Affiliation:

1. 1 Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam, Kozhikode, Kerala 673 571, India

Abstract

Abstract Bimetallic nanoparticles (BNPs) have been used as a new line of defence against heavy metal contamination among several types of nanoparticles (NPs) due to their enhanced, synergistic activity. In this study, we investigated the adsorption behaviour of porous (styrene–divinylbenzene)/CuNi bimetallic nanocomposite (P(St-DVB)/CuNi BNC) in a continuous flow fixed-bed column and its ability to remove Pb (II), Cd (II), and Zn (II) ions from aqueous solutions. We examined how the initial metal concentration, flow rate, and bed height affected the adsorption characteristics. Experimental results confirmed that the adsorption capacity increased with increase in influent metal concentration and bed height and decreased with increase in flow rate. The breakthrough and the column kinetic parameters were successfully predicted with three mathematical models: Thomas, Yoon–Nelson, and Adams–Bohart models. Both Thomas and Yoon–Nelson models showed good agreement with the experimental results for all the operating conditions. Successful desorption of heavy metals from the P(St-DVB)/CuNi BNC was performed using 0.5 M NaOH solution, and it showed good reusability of the adsorbent during four adsorption–desorption cycles. The results show that P(St-DVB)/CuNi BNC are effective and low-cost adsorbents, and they can be used in real-time large-scale industrial water treatment processes for the removal of heavy metals.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3