Electro-Fenton mineralization of real textile wastewater by micron-sized ZVI powder anode

Author:

Xue Wenjuan1,Hong Xiaoting1ORCID,Du Yingying1,Chen Bin2

Affiliation:

1. a Department of Chemistry, School of Science, Zhejiang Sci-tech University, Hangzhou 310018, P. R. China

2. b Zhejiang Agriculture and Forestry University, Lin'an 311300, China

Abstract

Abstract The diverse compositions and complex nature of the textile wastewater make it imperative to find an economical and suitable degradation pathway. The degradation of real textile wastewater on a novel heterogeneous electro-Fenton system was carried out with a composite anode of magnetically fixed micron ZVI coupling with a Ti/RuO2-IrO2 sheet. The influences of different variables such as mZVI dosage, H2O2 amount, applied voltage and pH value on both total organic carbon and chemical oxygen demand removal efficiencies and energy consumption were investigated. The optimized parameters were simultaneously verified by using electrochemical workstation Tafel curves and Nyquist plots. The optimal operating conditions for evaluating the wastewater treatment were H2O2 dosage of 0.10 mol·L−1, applied voltage of 5.0 V, mZVI amount of 1.0 g·L−1 and initial pH value of 3.0. The high TOC and COD removal efficiencies of 92.44 and 82.84% could be achieved simultaneously in 60 min, respectively. XRD, XPS and SEM-EDS were used to investigate the interaction between the pollutant and the mZVI. GC-MS analysis was performed on untreated and treated wastewater to determine the degradation of pollutants in dyeing wastewater during the electro-Fenton process and to effectively propose a suitable degradation mechanism for this system.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3