N, P and C removal simultaneously and microbial population numbers in a cyclic activated sludge system treating village and township domestic wastewater by altering the cycle times

Author:

Zhang Yiran1,Zhang Weijia1,Wang Haotong1,Wu Yanhu1,Liu Bingtao1

Affiliation:

1. 1 School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450000, China

Abstract

Abstract It was necessary to research an efficient treatment process suitable for township domestic wastewater. In this paper, the performance of the cyclic activated sludge system (CASS) system for simultaneous carbon (C), nitrogen (N) and phosphorus (P) removal was investigated by changing the operation cycle of the CASS reactor. Four operating conditions were set up, T1, T2, T3 and T4, with cycle times of 6, 8, 12 and 8 h (with carbon source), respectively. The results showed that the CASS system had good simultaneous removal of C, N and P. The highest removal rates of COD, TN, NH4+ -N and TP were 87.69, 72.99, 98.60 and 98.38%, respectively, at a cycle time of 8 h. The TN removal rate could be increased to 82.51% after the addition of carbon source. Microbial community analysis showed that Proteobacteria, Bacteroidetes and Candidatus Saccharibacteria were the main phylum-level bacteria. Their presence facilitated the effectiveness of the CASS process for nitrogen removal and phosphorus removal. Functional analysis of genes revealed that the abundance values of genes associated with C, N and P metabolism were higher when the treatment was effective.

Funder

河南省科技厅

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3