Isolation and algicidal properties study of the strain G1 from reservoir sediments

Author:

Yuan Keting1,Wan Qiong1,Ren Dajun2,Chai Beibei34,Kang Aiqing5,Lei Xiaohui345,Chen Bin67

Affiliation:

1. School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China

2. Shaanxi Modern Architecture Design and Research Institute, Xi'an 710014, China

3. Hebei Key Laboratory of Intelligent Water Conservancy, Hebei University of Engineering, Handan 056038, China

4. School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan 056038, China

5. China Institute of Water Resources and Hydropower Research, Beijing 100038, China

6. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China

7. Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, China

Abstract

Abstract Microcystis aeruginosa is a globally important cyanobacterial species that poses a threat to human health and development. The use of bacteria to control algal blooms has become an important research topic in recent years. In the present work, the algicidal strain G1 was isolated from sediments of a reservoir in Xi'an, China, identified by 16S ribosomal DNA (rDNA), and its algicidal effects were investigated. The rDNA sequence of G1 (GenBank accession number MW205793) is 99.86% similar to that of Chitinimonas sp., and the strain indirectly solubilised algae. Algae removal by G1 was optimal during the decay phase (algae solubilisation rate = 65.85%). Temperature (5–120 °C) did not significantly affect algae removal, pH 5–9 was tolerated, and pH 7 achieved the highest algae lysis rate (63.56%). Ultrasonic treatment of G1 destroyed the algae-solubilising effect. An injection ratio of 15% achieved the highest algae lysis rate (67.64%) under 12 h:12 h light:dark conditions, and full darkness achieved the highest algae lysis rate (68.21%). Thus, G1 can effectively inhibit the reproduction of M. aeruginosa, making it a promising biological agent for controlling algal growth.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3