Affiliation:
1. Fujian Eco-materials Engineering Research Center, Fujian University of Technology, Fuzhou 350118, China
Abstract
Abstract
Cellulose membranes have the advantages of good hydrophilicity, excellent mechanical properties, and biodegradability. Therefore, they are the first choice to replace petroleum polymer membranes. In this study, cellulose (BC) and chitosan (CS) were used as raw materials, and N-methylmorpholine-N-oxide (NMMO) was used as solvent. A new kind of cellulose nanofiltration membrane (BC-NFM), cellulose/chitosan nanofiltration membrane (BC/CS-NFM), and interfacial polymerized cellulose/chitosan composite nanofiltration membrane (IP-BC/CS-NFM) were successfully prepared by NaOH hydrolysis and chloroacetic acid carboxymethylation modification, piperazine (PIP), and 1,3,5-trimellitic chloride (TMC) interfacial polymerization, respectively. These two methods were used for the preparation of cellulose nanofiltration membranes for the first time.We also studied their structure, separation performance and their capacity to remove typical pollutants. The results showed that obvious holes appeared on the surface of the nanofiltration membrane obtained by alkali hydrolysis and chloroacetic acid carboxymethylation modification, and the cross-section showed a spongelike structure. The surface of the nanofiltration membrane obtained by interfacial polymerization formed a rough and dense separation layer. The rejection rates of the three kinds of nanofiltration membranes were all over 30% for monovalent salt ions, over 60% for divalent salt ions, over 92% for methyl orange, and over 98% for methyl blue. They had good removal effects for typical pollutants in drinking water.
Funder
the National Key Research and Development Program of China
The Research Development Foundation of Fujian University of Technology
The Initial Scientific Research Foundation of Fujian University of Technology
Subject
Water Science and Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献