Multi-level fuzzy comprehensive evaluation of the influence of reservoir sedimentation based on improved cloud model

Author:

Zhang Mingwang1ORCID,Shi Kebin1

Affiliation:

1. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, No. 311, Nongda East Road, Shayibake District, Urumqi 830052, China

Abstract

Abstract The extent of reservoir sedimentation is an important index related to the functional operation of reservoirs. Therefore, it is vital to accurately conduct sedimentary assessment. In this paper, the analytic hierarchy process was used to determine subjective weights, gray correlation analysis and entropy weight method were used to determine objective weights. The combination weights obtained using optimized combination weighting method based on genetic algorithm were more suitable for the comprehensive analysis of the impact of reservoir sedimentation. This was then used to constructed a multi-level fuzzy comprehensive evaluation model based on improved cloud model. A reservoir was selected as the study object, and its sedimentation impact level was evaluated: the numerical characteristics of the stratus cloud of the comment on the impact of the reservoir sedimentation were (0.6372, 0.0664, 0.0795). The results showed that the reservoir sedimentation is considered as severe influence, and the sedimentation has become a major problem that needed to be solved urgently. The results of this paper could provide insight for reservoir research domestically and abroad. Furthermore, it could also enable managers to more accurately grasp the severity of reservoir sedimentation.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference39 articles.

1. Stochastic and analytical approaches for sediment accumulation in river reservoirs

2. The Analysis of Sediment Reduction Effect by Installing Check Dams at Domestic Multi-Purpose Dams

3. Slope stability evaluation method based on combined weighting-improved cloud model;Cui;China and Foreign Highway,2019

4. Coal mine safety risk evaluation based on cloud model and combined weighting;Gao;Industry and Mine Automation,2019

5. Analysis of sediment deposition in Lushui Reservoir to guide dredging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3