Calibration of SWAT and three data-driven models for monthly stream flow simulation in Maharlu Lake Basin

Author:

Goudarzi Fatemeh Moazami1,Sarraf Amirpouya2ORCID,Ahmadi Hassan2

Affiliation:

1. Ph.D Candidate, Department of Civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran

2. Department of Civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran

Abstract

Abstract In this study, the performance of SWAT hydrological model and three computational intelligence methods used to simulate river flow are investigated. After collecting the data required for all models used, the calibration and validation stages were performed. Using the SWAT model and three methods of the Extreme Machine Learning (EML), the Support Vector Regression (SVR), and the Least Squares Support Vector Regression (LSSVR), Maharlu Lake Basin stream flow was simulated and the results obtained at Shiraz station were used for this study. A noise reduction filter was employed to improve the results from the computational intelligence methods, and SUFI-2 algorithm was used to analyze the uncertainty of the SWAT model. Finally, in order to evaluate the models developed and the SWAT model, three statistics (RMSE), (R²), and (NS) coefficient were used. The results indicated that the SWAT model and the machine learning models were generally appropriate tools for daily flow modeling, but the LSSVR model showed less errors in both learning and testing, with the coefficients NS = 0.997 and R² = 0.997 in the calibration stage and NS = 0.994 and R² = 0.994 in the validation stage, which prove their better performance compared to the other methods and the SWAT model.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3