Experimental and field verifications of radial gates as flow measurement structures

Author:

Shayan Hossein Khalili1,Farhoudi Javad1,Vatankhah Alireza1

Affiliation:

1. Irrigation and Reclamation Engineering Department, University College of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, 31587-77871 Karaj, Iran

Abstract

Abstract Radial gates are common structures in irrigation projects. This paper presents some theory-based equations for explicit estimation of the discharge from a radial gate under free and submerged flow conditions using energy and momentum (E-M) principles. The proposed equations were calibrated using extensive experimental data collected from the literature and this study for three types of radial gate under free and submerged flow conditions. The submergence threshold of radial gates is concluded, based on the concepts of hydraulic jump and the intersection of free and submerged head-discharge curves. The results indicated that the error in estimating the discharge increases under transition ( − 2.5 ≤ Sr% ≤ + 2.5), gate lip (1 < y0/w ≤ 2), and high submerged (yt/y0 ≥ 0.95) flow conditions. However, in these flow limit conditions, the discharge error can be considerably decreased by adjusting the tailwater depth to flow depth just after the gate and using the energy equation for the sections before and after the gate. The efficiency of the proposed methods was evaluated based on the data series from field measurements of radial gates in 29 check structures at irrigation canals in the United States and Iran. The results showed that the discharge could be estimated using the proposed equations in field conditions with acceptable accuracy.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3