Development of ANN model for discharge prediction and optimal design of sharp-crested triangular plan form weir for maximum discharge using linked ANN–optimization model

Author:

Ayaz Md.1,Mansoor Talib2

Affiliation:

1. Civil Engineering Section, University Polytechnic, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India

2. Civil Engineering Department, Zakir Husain College of Eng. & Tech., Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India

Abstract

Abstract Triangular plan form weirs are advantageous over a normal weir in two ways. Within the limited channel width, use of such a weir increases the crest length and hence for a given head, increases the discharge and for a given discharge, reduces the head in comparison with a normal weir. In a previous study, researchers proposed an empirical equation to compute the discharge coefficient of a triangular plan form weir. The prediction error on the discharge coefficient was ±7% from the line of agreement. In the present study, an ANN model has been utilized to train randomly selected 70% data, with 15% tested and validation made for the remaining 15% data. The model predicts the discharge coefficient with a prediction error in the range of ±2.5% from the line of agreement, thereby decreasing the prediction error in Cd by 64%. Also, the sensitivity analysis of the developed ANN model has been performed for all the parameters (weir height, skew weir length and flow depth) involved in the study and the weir height was found to be the most sensitive parameter. Furthermore, the linked ANN–optimization model has been developed to find the optimal values of design parameters of a triangular plan form weir for maximum discharge.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3