Hydrological time series prediction by extreme machine learning and sparrow search algorithm

Author:

Feng Bao-fei1,Xu Yin-shan1,Zhang Tao1ORCID,Zhang Xiao1

Affiliation:

1. Bureau of Hydrology, ChangJiang Water Resources Commission, Wuhan 430010, China

Abstract

Abstract In general, accurate hydrological time series prediction information is of great significance for the rational planning and management of water resource system. Extreme learning machine (ELM) is an effective tool proposed for the single-layer feedforward neural network in the regression and classification problems. However, the standard ELM model falls into local minimum with a high probability in hydrological prediction problems since the randomly assigned parameters (like input-hidden weights and hidden biases) often remain unchanged at the learning process. For effectively improving the prediction accuracy, this paper develops a hybrid hydrological forecasting model where the emerging sparrow search algorithm (SSA) is firstly used to determine the satisfying parameter combinations of the ELM model, and then the Moore-Penrose generalized inverse method is chosen to analytically obtain the weight matrix between the hidden layer and output layer. The proposed method is used to forecast the long-term daily runoff series collected from three real-world hydrological stations in China. Based on several performance evaluation indexes, the results show that the proposed method outperforms several ELM variants optimized by other evolutionary algorithms in both training and testing phases. Hence, an effective evolutionary machine learning tool is developed for accurate hydrological time series forecasting. HIGHLIGHT Hydrologic forecasting, sparrow search algorithm, extreme machine learning.

Funder

National Key Research and Development Program of China

Scientific Research Projects of China Three Gorges Group Co.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3