Integrating water quality and streamflow into prediction of chemical dosage in a drinking water treatment plant using machine learning algorithms

Author:

Wang Hui1,Asefa Tirusew2,Thornburgh Jack3

Affiliation:

1. Tampa Bay Water, 2575 Enterprise Road, Clearwater, Florida 33763, USA

2. System Decision Support, Tampa Bay Water, Clearwater, Florida 33763, USA

3. Tampa Bay Water, Clearwater, Florida 33763, USA

Abstract

Abstract Understanding the relationship between raw water quality and chemical dosage is especially important for drinking water treatment plants (DWTP) that have multiple water sources where the ratio of different supply sources could change with seasons or in a matter of weeks in response to changing hydrologic conditions. In this study, the potential for deploying machine learning algorithms, including principal component regression (PCR), support vector regression (SVR) and long short-term memory (LSTM) neural network, are tested to build predictive models. These tools were used to estimate chemical dosage at daily time scale. Influent water quality such as pH, color, turbidity, and alkalinity, as well as chemical dosage including sulfuric acid, ferric sulfate and liquid oxygen were used to build and test these models. An 80/20 percent data split was used for training and testing model performance using correlation coefficients, relative mean square error, relative root mean square error and Nash-Sutcliffe efficiency. Results indicate, compared to PCR, both SVR and LSTM, were able to capture the nonlinear relationship between chemical dose and source water quality changes and displayed higher predictive skills. These types of models have application in real-time operational support without requiring computationally expensive physics-based models.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3