Analysis of water yield service of Lianshui River Basin in China based on ecosystem services flow model

Author:

Zou Yang1ORCID,Mao DeHua1

Affiliation:

1. School of Geographical Sciences, Hunan Normal University, Changsha 410081, China

Abstract

Abstract Water security assessment is very important to social development. However, most studies only focus on the status quo of water security in a static state and ignore the flow characteristics of water resources in water security assessment. This paper integrates multi-source data to construct a water supply and service supply–demand balance and spatial flow model in the Lianshui River Basin, simulates the spatial pattern of the service flow of the aquatic water ecosystem in the Lianshui River Basin from 1990 to 2018, and quantifies the service flow. Results show that: (1) From 1990 to 2018, the water supply in the Lianshui River Basin first decreased, then increased, and finally decreased. Water yield was the highest in 2010 and lowest in 2000. (2) Water demand increased year by year, and the amount of area with a poor water resource security index increased, indicating that water security was deteriorating. (3) The four main beneficiary areas in the basin are the urban area of Lianyuan City, the county seat of Shuangfeng County, the Louxing District of Loudi City, and the urban area of Xiangxiang City and nearby towns. The service flow showed the same changing trend as the water yield. In 2018, the water resource gap in the beneficiary area was as high as 4.49 billion m3. Local governments should actively build a water-saving society, improve the efficiency of industrial and agricultural water-saving and residents' awareness of water-saving, and improve the water resources in the river basin. The research can provide a scientific basis for realizing the sustainable development of water resources in the Lianshui River Basin and improving the ecological compensation mechanism, and can also provide references for water resources management in other river basins.

Funder

the Joint Fund for Regional Innovation and Development of NSFC

the Research Project of Hunan Provincial Water Resources Department

Key Laboratory of Engineering Structures Damage and Diagnosis of Hunan Province

the Construction Program for First-Class Disciplines (Geography) of Hunan Province, China

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3