Modeling and optimization of a continuous electrocoagulation process using an artificial intelligence approach

Author:

Graça Nuno S.1ORCID,Ribeiro Ana M.1,Rodrigues Alírio E.1

Affiliation:

1. Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Abstract

Abstract An artificial neural network (ANN) with the topology 8-94-85-2 (input – hidden layer 1 - hidden layer 2 - output) was used to model the operation of the continuous electrocoagulation (CEC) process for the removal of fluoride from water. After the ANN training, the sum of the squared errors (MSE) and the determination coefficient (R2) of the testing set model predictions were 0.0088 and 0.999, respectively, showing a good generalization and the model's predictive capacity. The optimization of the process cost using the genetic algorithm (GA) showed that the optimal conditions are highly dependent on the feed concentration and the fluoride removal requirements. For 5 L of water containing 10 mg/L of fluoride, the optimal conditions to reduce the fluoride concentration below the permissible limit (1.5 mg/L) are 88.3 mA of current intensity, a flow rate of 73.6 mL/min, and the use of a series monopolar (SM) electrode configuration, corresponding to a fluoride removal of 85% and an operating cost of 0.05 €/L.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3