Fuzzy-probabilistic modeling the flood characteristics using bivariate frequency analysis and α-cut decomposition

Author:

Sun Xiaozhou1,Khayatnezhad Majid2

Affiliation:

1. School of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China

2. Department of Environmental Sciences and Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran

Abstract

Abstract Water allocation in agricultural lands, optimal design of hydraulic structures and climatic phenomena are the events in water management science that face hydrological uncertainties. The purpose of this study is to estimate the characteristics of surface runoff based on probabilistic and fuzzy analysis. Separation and generation of basic hydrological information, probabilistic modeling, fuzzy analysis, and optimization to achieve the solution were the main steps of the decision-making problem. Long-term hydrological data of the study area were collected, analyzed and used as a basis for the simulation model. In this study, a copula-based stochastic method was developed to deal with uncertainties related to rainfall and runoff characteristics as well as to address the nonlinear dependence between multiple random variables. The relationship between rainfall variables and flood characteristics was formulated through fuzzy set theory. The feasible domain of the fuzzy problem was searched using the non-dominated sorting genetic algorithm to find the optimal extreme points. The obtained solutions were used as a fuzzy response to calculate the flood of the Baghmalek plain in Khuzestan province in southwestern Iran. The results showed that the maximum model error occurred in predicting rainfall depth and flood volume, and the maximum rainfall rate and runoff flow could be calculated more accurately. Moreover, the developed fuzzy-probabilistic model was able to predict more than 90% of flood events within the defined fuzzy range.

Funder

The Innovation Team Planning Project of Hubei

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3