Predicting the infiltration characteristics for semi-arid regions using regression trees

Author:

Sihag Parveen1,Kumar Munish2,Sammen Saad Sh.3

Affiliation:

1. Shoolini University, Solan, Himachal Pradesh 173229, India

2. National Institute of Technology, Kurukshetra 136119, India

3. Department of Civil Engineering, College of Engineering, University of Diyala, Diyala Governorate, Iraq

Abstract

Abstract The study of the infiltration process is considered essential and necessary for all hydrology studies. Therefore, accurate predictions of infiltration characteristics are required to understand the behavior of the subsurface flow of water through the soil surface. The aim of the current study is to simulate and improve the prediction accuracy of the infiltration rate and cumulative infiltration of soil using regression tree methods. Experimental data recorded with a double ring infiltrometer for 17 different sites are used in this study. Three regression tree methods: random tree, random forest (RF) and M5 tree, are employed to model the infiltration characteristics using basic soil characteristics. The performance of the modelling approaches is compared in predicting the infiltration rate as well as cumulative infiltration, and the obtained results suggest that the performance of the RF model is better than the other applied models with coefficient of determination (R2) = 0.97 and 0.97, root mean square error (RMSE) = 8.10 and 6.96 and mean absolute error (MAE) = 5.74 and 4.44 for infiltration rate and cumulative infiltration respectively. The RF model is used to represent the infiltration characteristics of the study area. Moreover, parametric sensitivity is adopted to study the significance of each input parameter in estimating the infiltration process. The results suggest that time (t) is the most influencing parameter in predicting the infiltration process using this data set.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3