Dynamic simulation of inner flow in a photovoltaic pump based on Simulink and CFD

Author:

Wu Xianfang1,Ye Heyu1,Tan Minggao2,Liu Houlin2

Affiliation:

1. School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China

2. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China

Abstract

Abstract To study the internal flow characteristics of the photovoltaic pump under the transient change of solar radiation, the simulation algorithm of the photovoltaic pump system was established by MATLAB/Simulink and CFD for the first time and the results were validated by the test. Firstly, the change rule of pump flow rate and rotation speed under transient solar radiation was obtained by Simulink. Then the results of the change rule were transformed into the boundary condition of CFD by CEL function and the transient flow field in the photovoltaic pump was obtained. The internal flow characteristics and pressure pulsation in the pump were analyzed when the solar radiation increases or decreases transiently. The results demonstrate that the numerical calculation can provide accurate prediction for the characteristics of internal flow in the pump. The numerical results are closed to the experimental results, the minimum error of pressure is 0.93% and the maximum error is 1.78%. When the solar radiation increases transiently, the low pressure area at the impeller inlet gets larger obviously and the jet-wake at the impeller outlet becomes more obvious. The pressure pulsation in the impeller gradually increases and becomes stable after 0.6 s. The pressure from the impeller outlet to the guide vane outlet is stable at 123 kPa. When the solar radiation decreases transiently, the pressure in the impeller takes 1.6 s to be stable. Larger pressure pulsation occurs from the impeller outlet to the guide vane inlet and the maximum differential pressure is 10 kPa. Compared with the transient increase of solar radiation, the pressure in the impeller takes over 0.2 s to stabilize when the solar radiation transient decreases. Meanwhile, the results in this paper can provide references for other transient characteristics research.

Funder

The National Key R&D Program of China

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model Library System Based on Multi-Domain Simulation Model Integration Interface;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3