Hydraulic characteristics of countercurrent jets on adverse-sloped beds

Author:

Wang Lei1,Li Zhen2,Diao Ming-jun1

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

2. Department of Hydraulic Engineering, Sichuan Water Conservancy Vocational College, Dujiangyan 611800, China

Abstract

Abstract The counter-current jet (CCJ) acts like a reverse surface jet layer covering the free jump surface and has potential applications in the energy dissipation of hydraulic engineering. The present study investigated the hydraulic characteristics of CCJs on adverse-sloped beds. The results showed that, compared to the horizontal bed, the slope didn't increase the energy dissipation rate of CCJ but reduced the return flow length and upstream depth. The velocity distribution along the depth was divided into the boundary layer region, mixing region, and reverse surface jet region. The velocity distribution in the boundary layer region and the mixing region was similar to the classical wall jet. The jet Froude number and the bed slope had no significant effect on the turbulence intensity distribution and turbulence kinetic energy (TKE) distribution of CCJ. The distribution of TKE was similar to that of a submerged jump. The maximum absolute turbulence intensity appeared at exactly half of the maximum velocity. The maximum TKE appeared at the mixing region. Besides, empirical formulas for estimating length scales and maximum velocity attenuation are proposed. The results could provide a reference for the potential application of CCJ in energy dissipation in hydraulic engineering.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference23 articles.

1. Hydraulics of B-F and F jumps in adverse-slope stilling basins;Water Management,2009

2. Hydraulic jumps in sloping channels: length and energy loss;Canadian Journal of Civil Engineering,2010

3. A new roughened bed hydraulic jump stilling basin;Asian Journal of Applied Sciences,2009

4. Fully rough submerged plane wall-jets;Journal of Hydro-Environment Research,2010

5. Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps;Journal of Hydro-Environment Research,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3