Thermal and chemical disinfection of water and biofilms: only a temporary effect in regard to the autochthonous bacteria

Author:

Nocker Andreas1ORCID,Lindfeld Elisa12ORCID,Wingender Jost13ORCID,Schulte Simone4ORCID,Dumm Matthias5,Bendinger Bernd1

Affiliation:

1. Applied Microbiology, IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany

2. Department of Chemical Engineering, University of Applied Sciences Münster, Stegerwaldstraße 39, 48565 Steinfurt, Germany

3. Faculty of Chemistry, Environmental Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany

4. Evonik Operations GmbH, Goldschmidtstraße 100, 45127 Essen, Germany

5. thyssenkrupp Steel Europe AG, Kaiser-Wilhelm-Straße 100, 47166 Duisburg, Germany

Abstract

Abstract Thermal and chemical disinfection of technical water systems not only aim at minimizing the level of undesired microorganisms, but also at preventing excessive biofouling, clogging and interference with diverse technical processes. Typically, treatment has to be repeated in certain time intervals, as the duration of the effect is limited. The transient effect of disinfection was demonstrated in this study applying different treatments to water and biofilms including heat, chlorination, a combination of hydrogen peroxide and peracetic acid and monochloramine. Despite the diverse treatments, the reduction in live bacteria was followed by regrowth in all cases, underlining the universal validity of this phenomenon. The study shows that autochthonous bacteria can reach the concentrations given prior to treatment. The reason is seen in the nutrient concentration that has not changed and that forms the basis for regrowth. Nutrients are released by disinfection from lysed cells or are still fixed in dead biomass that is subsequently scavenged by necrotrophic growth. Treatment cycles therefore only provide a transient reduction of water microbiology if nutrients are not removed. When aiming at greater sustainability of the effect, biocidal treatment has to be equally concerned about nutrient removal by subsequent cleaning procedures as about killing efficiency.

Funder

Bundesministerium für Bildung und Forschung

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3