Microbial faecal pollution of river water in a watershed of tropical Ethiopian highlands is driven by diffuse pollution sources

Author:

Mushi Douglas1,Kebede Geda23,Linke Rita B.4,Lakew Aschalew5,Hayes Daniel S.36,Graf Wolfram3,Farnleitner Andreas H.47

Affiliation:

1. Department of Biosciences, Solomon Mahlangu College of Science and Education, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania

2. Department of Biological Sciences, Ambo University, P.O. Box 95, Ambo, Ethiopia

3. Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), BOKU, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria

4. Research Group of Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1A/166, 1060 Vienna, Austria

5. National Fishery and Aquatic Life Research Centre, Ethiopian Institute of Agricultural Research (EIAR), P.O. Box 64, Sebeta, Ethiopia

6. Centro de Estudos Florestais (CEF), University of Lisbon, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon, Portugal

7. Research Division Water Quality and Health, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria

Abstract

Abstract Tropical communities in the developing world depend heavily on riverine systems for their socioeconomic development. However, these resources are poorly protected from diffuse pollution, and there is a lack of quantitative information regarding the microbial pollution characteristics of riverine water, despite frequently reported gastrointestinal diseases. The aim of our study was to apply faecal taxation (i.e., faecal pellet counting in representative test areas to estimate the potential availability of diffuse pollution sources) in combination with a detailed microbiological faecal pollution analysis in a riverine environment to elucidate the importance of diffuse pollution. To realize this approach, ambient faecal pellets, a multiparametric data set for standard faecal indicator bacteria (SFIB), including Escherichia coli, Clostridium perfringens spores and enterococci from catchment soil and river water, and a number of riverine water physicochemical variables were analysed during a one-year cycle. We demonstrated that the abundance of ambient faecal pellets, which were consistently counted at reference sites in the catchment, was associated with faecal pollution in the river water. Water SFIB, dissolved oxygen, nutrients, conductivity and total suspended solids were strongly linked with the abundance of ambient faecal pellets in the river catchment, as demonstrated by principal component analysis (PCA). Elevated concentrations of SFIB in the riverine water in the absence of rainfall also suggested the direct input of faecal bacteria into the riverine water by livestock (e.g., during watering) and humans (e.g., during bathing). Statistical analyses further revealed that the microbiological water quality of the investigated riverine water was not influenced by SFIB potentially occurring in the soil. This study demonstrates the importance of diffuse faecal pollution sources as major drivers of the microbiological quality of riverine water in the Ethiopian highlands. In addition, the new successfully applied integrated approach could be very useful for developing predictive models, which would aid in forecasting riverine microbiological quality in tropical developing countries.

Funder

Austrian Partnership Programme in Higher Education and Research for Development (APPEAR), a programme of the Austrian Development Cooperation

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3