Determination of odour threshold concentration ranges for some disinfectants and disinfection by-products for an Australian panel

Author:

McDonald S.1,Lethorn A.1,Loi C.1,Joll C.1,Driessen H.1,Heitz A.1

Affiliation:

1. Curtin Water Quality Research Centre (CWQRC), Department of Applied Chemistry, Curtin University of Technology, GPO Box U1987, Perth WA, 6845, Australia

Abstract

Taste-and-odour complaints are a leading cause of consumer dissatisfaction with drinking water. The aim of this study was to determine odour threshold concentration ranges and descriptors, using a Western Australian odour panel, for chlorine, bromine, chlorine added to bromide ions, the four major regulated trihalomethanes (THMs), and combined THMs. An odour panel was established and trained to determine odour threshold concentration ranges for odorous compounds typically found in drinking water at 25°C, using modified flavour profile analysis (FPA) techniques. Bromine and chlorine had the same odour threshold concentration ranges and were both described as having a chlorinous odour by a majority of panellists, but the odour threshold concentration range of bromine expressed in free chlorine equivalents was lower that that of chlorine. It is likely that the free chlorine equivalent residuals measured in many parts of distribution systems in Western Australia are comprised of some portion of bromine and that bromine has the potential to cause chlorinous odours at a lower free chlorine equivalent concentration than chlorine itself. In fact, bromine is the likely cause of any chlorinous odours in Western Australian distributed waters when the free chlorine equivalent concentration is between 0.04 and 0.1 mg L−1. Odour threshold concentrations for the four individual THMs ranged from 0.06–0.16 mg L−1, and the odour threshold concentration range was 0.10 ± 0.09 mg L−1 when the four THMs were combined (in equal mass concentrations). These concentrations are below the maximum guideline value for total THM concentration in Australia so odours from these compounds may possibly be observed in distributed waters. However, while the presence of THMs may contribute to any sweet/fragrant/floral and chemical/hydrocarbon odours in local drinking waters, the THMs are unlikely to contribute to chlorinous odours.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3