Control of membrane fouling in membrane bioreactor process by coagulant addition

Author:

Mishima I.12,Nakajima J.1

Affiliation:

1. Department of Environmental Systems Engineering, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, shiga 525-8577, Japan

2. Group of Water Environment, Center for Environmental Science in Saitama, 914, Kamitanadare, Kisai, Kitasaitama, Saitama 347-0115, Japan

Abstract

The control of membrane fouling is an essential issue in membrane bioreactor (MBR) process. It has been recognized that the most important factors that affect membrane fouling are presence of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in a reactor. The objective of this study was to examine the effect of the coagulant addition on the membrane fouling in the MBR process. Accordingly, laboratory scale batch experiments and MBR experiments were conducted using coagulant. In batch experiments, effective SMP removal and control of EPS release were observed by coagulant addition. Fe coagulant was slightly more effective than Al coagulant in the addition of same mole amount. Therefore, Fe was used as coagulant in MBR experiments. In MBR experiments, Fe solutions of 0 mg/L, 2,260 mg/L and 4,520 mg/L were added into the tanks (Run1, Run2 and Run3, respectively) with the flow rate of 200 mL/d. COD removal efficiencies of 97% and phosphorus removal efficiencies of 92% were observed by Fe addition in the MBR experiment. Membrane fouling occurred more often in Run1 than in the other two Runs. Membrane was cleaned 18, 9 and 5 times in Run1, Run2 and Run3, respectively during 40 days runs. This suggested that the membrane fouling was reduced by the coagulant addition. The protein and carbohydrate concentrations of the SMP in the fraction of 1 μm–0.4 μm in Run2 and Run3 were significantly lower than that in Run1 and the particle size of the activated sludge was obviously increased in Run2 and Run3. These results suggested that the coagulant addition is effective to control the membrane fouling.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3