Affiliation:
1. Department of Environmental Engineering, Faculty of Engineering, Firat University, 23119-Elazig, Turkey E-mail: uipek@firat.edu.tr
2. Center for Biotechnology Research, Firat University, 23119-Elazig, Turkey
3. Department of Environmental Engineering, Faculty of Civil, Istanbul Technical University, Ayazaga, Istanbul, Turkey E-mail: ckinaci@ins.itu.edu.tr
Abstract
Young leachate was a high strength wastewater with regard to carbon and nitrogen matter, and up to now many researchers have focused on a number of treatment methods to treat the leachate. By using various treatment processes, joint treatment of leachate with domestic wastewater, resulted from same community, is one of the most significant methods because domestic wastewater has either larger mass or lower strength than leachate. In this study, a submerged membrane bioreactor (sMBR) was used for treatment of blending wastewater, including differential mixture ratios of domestic wastewater and leachate. In raw leachate, BOD5/COD was between 0.40 and 0.67 and total phosphorus was between 17 and 24 mg/l. After the leachate was blended with domestic wastewater in the ratios of 1/5–1/20, the influent COD decreased from 8,500–14,200 mg/l to 750–2,400 mg/l as ammonium decreased from 1,100–2,150 mg/l to 30–180 mg/l. The sMBR, which was aerated intermittently, accomplished both COD oxidation and nutrient removal at optimal conditions without adding the external phosphorus source, providing < 15 mg COD/l, <1.3 mg NH4+-N/l, and <2.0 mg P/l on average at solid retention times (SRT) higher than 10 days. Consequently, the results showed the mixture of leachate and domestic wastewater could be an acceptable alternative by means of membrane bioreactor technology.
Subject
Water Science and Technology,Environmental Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献