Modelling of COD removal in a biological wastewater treatment plant using adaptive neuro-fuzzy inference system and artificial neural network

Author:

Civelekoglu G.1,Yigit N. O.1,Diamadopoulos E.2,Kitis M.1

Affiliation:

1. Department of Environmental Engineering, Suleyman Demirel University, Isparta TR-32260, Turkey E-mail: civelek@sdu.edu.tr; n.yigit@mmf.sdu.edu.tr; mkitis@mmf.sdu.edu.tr

2. Department of Environmental Engineering, Technical University of Crete, Chania GR-73100, Greece E-mail: diamad@dssl.tuc.gr

Abstract

This work evaluated artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) modelling methods to estimate organic carbon removal using the correlation among the past information of influent and effluent parameters in a full-scale aerobic biological wastewater treatment plant. Model development focused on providing an adaptive, useful, practical and alternative methodology for modelling of organic carbon removal. For both models, measured and predicted effluent COD concentrations were strongly correlated with determination coefficients over 0.96. The errors associated with the prediction of effluent COD by the ANFIS modelling appeared to be within the error range of analytical measurements. The results overall indicated that the ANFIS modelling approach may be suitable to describe the relationship between wastewater quality parameters and may have application potential for performance prediction and control of aerobic biological processes in wastewater treatment plants.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3