Innovative water treatment system coupled with energy production using photo-Fenton reaction

Author:

Tokumura M.1,Morito R.1,Shimizu A.1,Kawase Y.1

Affiliation:

1. Department of Applied Chemistry, Toyo University, Kawagoe Saitama, 350-8585, Japan E-mail: gc0800136@toyonet.toyo.ac.jp; ta0500921@toyonet.toyo.ac.jp; ykawase@toyonet.toyo.ac.jp

Abstract

The treatment of colored effluent coupled with energy production using a modified photo-Fenton process has been examined. Fe and carbon plates were employed as an anode and cathode, respectively. In acidic solution, Fe plates would corrode, which leads to elute ferrous ion from Fe plates into the solution and to yield hydrogen gas at the cathode and to generate an electric energy. The eluted ferrous ion could be used for the photo-Fenton reaction. As a result, decolorization of colored effluent and production of electricity and hydrogen could be carried out simultaneously and effectively. It was found that the Orange II concentration in the colored effluent flow decreased up to 84.2% of inlet concentration at 0.8 of relative position in the liquid flow path of continuous photo-reactor. In our proposed system, the energy production, such as an electric power and a hydrogen gas, can be generated at the same time as the decolorization of colored effluent. The produced electric power was 16.5 Wh kg−1-Fereacted. The produced hydrogen gas was estimated as 13 g-H2 kg−1-Fereacted.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3