Interpretation of seasonal water quality variation in the Yeongsan Reservoir, Korea using multivariate statistical analyses

Author:

Cho Kyung Hwa1,Park Yongeun1,Kang Joo-Hyon1,Ki Seo Jin1,Cha Sungmin1,Lee Seung Won1,Kim Joon Ha2

Affiliation:

1. Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, South Korea E-mail: firstkh@gist.ac.kr

2. Sustainable Water Resource Technology Center, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, South Korea E-mail: Joonkim@gist.ac.kr

Abstract

The Yeongsan (YS) Reservoir is an estuarine reservoir which provides surrounding areas with public goods, such as water supply for agricultural and industrial areas and flood control. Beneficial uses of the YS Reservoir, however, are recently threatened by enriched non-point and point source inputs. A series of multivariate statistical approaches including principal component analysis (PCA) were applied to extract significant characteristics contained in a large suite of water quality data (18 variables monthly recorded for 5 years); thereby to provide the important phenomenal information for establishing effective water resource management plans for the YS Reservoir. The PCA results identified the most important five principal components (PCs), explaining 71% of total variance of the original data set. The five PCs were interpreted as hydro-meteorological effect, nitrogen loading, phosphorus loading, primary production of phytoplankton, and fecal indicator bacteria (FIB) loading. Furthermore, hydro-meteorological effect and nitrogen loading could be characterized by a yearly periodicity whereas FIB loading showed an increasing trend with respect to time. The study results presented here might be useful to establish preliminary strategies for abating water quality degradation in the YS Reservoir.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3